
Lattice Boltzmann Method

B4M39GPU

Martin Čáp

January 3, 2019

Abstract

This paper describes the implementation of real-time Lattice Boltzmann sim-
ulation of fluids. Lattice Boltzmann Method (LBM) calculates the macroscopic
averaged quantities of the Navier-Stokes equations. This is achieved by solving the
discrete-velocity Boltzmann equation in a regular lattice. Both 2D and 3D C++
implementations are described in this paper. Furthermore, the solver can be run
either on CPU or on Nvidia GPU using CUDA technology.

1 Introduction

Simulation of fluids is a very popular topic in computer graphics since it is a part of many
interesting natural phenomena such as water, wind, smoke, clouds and many other. The
methods that are used in the field of computational fluid dynamics (CFD) that try to
portray these phenomena using real physical models are generally too slow for real-time
rendering, especially considering that we may want to use these effects among many
other systems. For example, in a video game, aside from simulating and rendering the
flowing wind and river, we also need to take care of the game logic, animations, AI and
much more. Thankfully, a method that can simulate these phenomena and can be run
in real-time if used appropriately exists and it is called the Lattice Boltzmann method
(LBM).

2 Algorithm

The main idea is that fluids can be perceived as a large number of very small particles
interacting with each other, exchanging energy, colliding, i.e. fluids can be perceived
as a group of their molecules on microscopic level. The LBM simplifies this model by
representing these molecular particles in an equidistant grid of nodes (sometimes called
cells or sites) called the lattice. Each node contains a distribution function fi(~x, t) that
describes the probability that the particle in node ~x will move in the direction ~ei (see
Equation 1) or not move at all at time step t. In short, when using Navier-Stokes equa-
tions we are interested in calculating the macroscopic continuous values such as density

1



Figure 1: Streaming step for D2Q9 configuration [4].

and velocity directly, when using LBM we calculate these values from the microscopic
properties of the fluid (its molecules and their chaotic movement) by establishing links
between them and their continuous counterparts [1]. For the description of these proper-
ties we use the DdQq notation, where d is the number of dimensions (in our case 2 and 3)
and q is the number of possible streaming directions. The most common model for 2D is
D2Q9, where the streaming of particles is done in 9 directions, on axes, on diagonal, and
zero vector (not moving) as shown in Figure 1. For 3D, the most common are D3Q15,
D3Q19 and D3Q27. As described in [2, 3], the D3Q19 keeps the computational costs
low while maintaining an isotropic lattice, hence why I chose it for this work.

The algorithm can be decomposed into multiple steps which are not dependent on
the dimensionality. Let us first look at the two main steps that are essential for LBM:
streaming step and collision step.

2.1 Streaming Step

The idea of the streaming step is very simple. We propagate the particle densities in
the streaming directions as described by the DdQq notation. For each lattice node, we
compute the updated distribution function using the values from previous frame as you
can see in Figure 1 where magnitudes of vectors ~fi are values of the distribution function
in the streaming directions. The same principle as in Figure 1 applies in 3D, where the
streaming is done in 19 directions including zero vector.

2



Let ~u be the macroscopic velocity of the particle. Vector ~u is simply a d dimensional
velocity vector (so either 2D or 3D). As described in [4], we have a microscopic velocity
vector ~ei for the D2Q9 model defined as

~ei =











(0, 0) i = 0

(1, 0), (0, 1), (−1, 0), (0,−1) i = 1− 4

(1, 1), (−1, 1), (−1,−1), (1,−1) i = 5− 8

(1)

For the 3D case I have chosen to use the third ordering proposed by Woodgate et al. [2]
that is described by

~ei =































(0, 0, 0) i = 0

(±1, 0, 0), (0, 0,±1), (0,±1, 0) i = 1− 6

(±1, 0,±1) i = 7− 10

(0,±1,±1) i = 11− 14

(±1,±1, 0) i = 15− 18

(2)

These orderings can be seen in Figure 2

(a) D2Q9 ordering [4]. (b) D3Q19 ordering. Third possible or-
dering as proposed in [2].

Figure 2: Selected orderings for the implementation.

The distribution function that we compute during the streaming step is denoted f∗

i

and is important later on when the molecular particles collide during the collision step.

3



2.2 Collision Step

The second main step is called the collision step. Here we compute the particle collisions,
hence, the particle distribution function in next frame based on the density values within
each node. First, we need to compute the macroscopic density ρ which is described by
the sum of distribution function values in the given node.

ρ(~x, t) =

q
∑

i=0

fi(~x, t) (3)

After that, we can compute the macroscopic velocity ~u as

~u(~x, t) =
1

ρ

q
∑

i=0

cfi~ei (4)

where c is the lattice velocity. Now when we have the macroscopic velocity of the
examined node, we need to compute the equilibrium and update the distribution function
fi. The Bhatnagar-Gross-Krook (BGK) collision operator is used to find the equilibrium
distribution f eq

i for single phase flows (e.g. water, air, steam), where

f eq

i (~x, t) = wiρ+ ρsi(~u(~x, t)) (5)

where si(~u) is defined as

si(~u) = wi

[

3
~ei · ~u

c
+

9

2

(~ei · ~u)
2

c2
−

3

2

~u · ~u

c2

]

(6)

and wi are the weights (in 2D):

wi =











4/9 i = 0

1/9 i = 1− 4

1/36 i = 5− 8

(7)

and in 3D:

wi =











1/3 i = 0

1/18 i = 1− 6

1/36 i = 7− 18

(8)

Let f∗

i be the distribution function of node i that was already processed in the
streaming step as mentioned earlier. The final distribution function for regular lattice
node after the collision step is given by

fi = f∗

i −
1

τ
(f∗

i − f eq

i ) (9)

where τ is the relaxation time which is directly related to the viscosity of the fluid. When
τ → 1/2, numerical instability may arise [4].

4



(a) τ = 0.51

(b) τ = 0.75

(c) τ = 10

Figure 3: Flow around circular obstacle with different τ values.

2.3 Inlet Update Step

To create the flow in the simulation, we need to define an initial macroscopic velocity in
selected nodes. We call these nodes inlets, since they let in the stream. This step is very
similar to the collision step, only difference is that we do not compute the macroscopic
density and velocity. Macroscopic density is set to 1.0 and velocity is selected as needed.
Equilibrium is then established and the same computation as in collision step is done.

5



Figure 4: Full bounce back as presented in [4].

2.4 Boundary Conditions & Obstacles (Update Colliders)

The problem of boundaries and obstacles in the scene can be solved simply by using a
full bounce back model as described in [3, 4]. The idea is that we simply reverse the
distribution function values (left value becomes the right value, etc.) after the streaming
step. The obstacles are described by a simple boolean array in 2D. In 3D, I use a simple
heightmap where all nodes that lie below the heightmap are considered as obstacles. The
full bounce back rule is very beneficial for the parallel algorithm since we do not need
any information such as normals of the obstacle boundary other than the distribution
function itself. You can see in Figure 4 a similar approach where only the incoming
distribution vectors are reversed.

2.5 Particle Movement Step

Since we want to transport our particles, we need to move them according to the macro-
scopic velocities that are described in the lattice. Here, we find out the coordinate
position of each particle and do bilinear or trilinear interpolation of the velocities that
surround the particle in 2D and 3D, respectively. In other words, in 2D, we find four
adjacent lattice nodes that surround the particle and interpolate their macroscopic ve-
locities. In 3D, we find eight adjacent nodes and do the same. The final interpolated
velocity is then added to the position of the particle.

If the particle reaches boundaries of the whole simulation, multiple cases can occur.
For top and bottom boundaries in 2D and for left and right boundaries in 3D, we cycle
the particles through as if there were no wall when the option “mirror sides” is enabled.
For example, if a particle were to leave the 2D simulation area at the top of the screen, we
would move it to the bottom of the screen and we would keep its horizontal coordinate
x as it were. If “mirror sides” is disabled, we simply respawn the particles. At the end
of the simulation area, usually called outlet, we respawn the exiting particles in desired
spawn area (e.g. left edge in 2D, left wall in 3D) randomly with uniform distribution.

6



2.6 Main Loop

The algorithm is presented differently in many articles. The approach I’ve used does the
algorithm steps in this order:

1. update inlets

2. streaming step

3. update colliders (obstacles)

4. collision step

5. move particles (not to be confused with streaming step)

3 CPU Implementation

The implementation on the CPU is a basic sequential implementation of the algorithm.
We use two lattices, one for rendering while the other is computing the next frame.
It is possible to implement indexation that supports in-place update of the lattice as
proposed by Latt [5] but it is out of scope of this work. The lattice is saved in memory
as a one dimensional array of Nodes where each node holds either 9 or 19 float values in
2D and 3D, respectively.

There was an attempt to parallelize the main steps of the algorithm using OpenMP
library. Unfortunately, after initial tests, the usage of 8 threads produced slower results
than usage of single thread since the code was not initially produced with OpenMP
parallelization in mind. Due to time constraints the CPU parallelization was omitted
from the final application.

The CPU implementation provides two options of respawning particles: randomly or
linearly. Linear respawn means that the particles respawn “in line” on the y axis in 2D
or “line by line” on the y and z axes in 3D. The value of τ can be controlled at runtime
showing differences between fluids with low and high viscosity. Fluids with low viscosity
create eddy currents since they have a high Reynolds number.

4 GPU Implementation

The LBM is an embarrasingly parallelizable problem. Thanks to this, the CPU and
GPU implementations do not differ much. Each lattice node is managed by one thread
and since we represent the lattice as one dimensional array, the indexation is also very
straight forward. From the Nsight results it was observed that the biggest bottleneck
(as can be seen in section 7) is the movement of particles where we access lattice nodes
adjacent to the particles. Especially in the case of 3D LBM the memory access of 8
adjacent nodes is a problematic section of the algorithm. In the future, I’d like to try
and solve this by using texture memory in 2D and texture array in 3D where the bilinear

7



interpolation is done through hardware (and trilinear interpolation is then reduced to
two texture taps and simple interpolation between the two values).

For the collision step we make use of shared memory cache that loads the whole
block of lattice nodes. This is most effective when the size of blocks is rather small since
we want to run a good amount of blocks on single streaming multiprocessor (SM). This
means that we use 256 threads in 2D and 32x2 threads in 3D. This configuration of
blocks was used for time measurements.

One interesting detail I’d like to mention is that it’s possible to enable an option to
change from CPU to GPU implementation and vice versa at runtime when using LBM
2D by defining LBM EXPERIMENTAL and recompiling. This is highly unstable and
not fully debugged but it provides a simple way to see speed differences between the two
implementations at runtime. One large caveat of this is that we need to copy all particle
positions back to CPU when switching from GPU to CPU implementation.

4.1 OpenGL Interoperability

The biggest bottleneck of the whole application is usually the transfer of data between
CPU and GPU, especially if we need to transfer data in each frame. In the initial
GPU implementation (and in the CPU implementation), the particle positions had to
be uploaded to the OpenGL vertex buffer object (VBO) after each update of the lattice.
With large amounts of particles, this process screeches the whole application to a halt.
Since the algorithm is very nicely parallelizable, the idea is to run each simulation step
on the GPU and not to transfer any data between CPU and GPU at all. This is possible
thanks to the interoperability capabilities between CUDA and OpenGL where a CUDA
kernel can directly manipulate data that is already buffered on the GPU using the VBO.
This can be seen in the moveParticlesKernelInterop kernel function, where we set the
particle positions directly. For this to work, we need a cudaGraphicsResource that we
map to the VBO resource. The pointer acts as a simple glm::vec3 array in our case.

The GPU implementation provides one option that is not present in the CPU im-
plementation which is simple color mapping of the particle velocities to viridis color
map. This is done through mapping another VBO of particle colors for usage in CUDA
kernels. Examples of this mapping can be seen in Figure 5 and Figure 6.

8



Figure 5: Visualization of particle velocities using viridis color map in 2D.

Figure 6: Visualization of particle velocities using viridis color map in 3D.

9



5 Application Details

5.1 Scenes

The obstacles and heightmaps are simple .ppm (ASCII) files that can be created in
Gimp and loaded as scenes for the simulation. Only the red channel of images is used
for scene creation. In 2D, any image pixel with intensity larger than 0 (in red channel)
is considered as an obstacle. For 3D, the heightmap is generated in such manner, that
pixels with intensity set to 0 are at ground level and pixels with intensity 255 (maximum
range for .ppm files) are vertices that reach the top of the bounding volume of the scene.

5.2 Controls and Configuration

The application can be controlled at runtime using the provided user interface or some
of the selected keyboard shortcuts. W, S, A, D keys are used to operate the camera
location. Q and E are used for camera rotation in 3D. R resets the simulation and T
pauses it. I, O and P are used in 3D to set front, side and top view of the camera,
respectively. Some of the variables that are not modifiable at runtime can be set before
running the application in the configuration file “config.ini”. Command line arguments
can also be used. Available options are “-h” for help, “-t” for selecting LBM type (3D
or 2D), “-s” for setting scene file, “-m” for whether to measure time (true or false), “-lh”
for setting lattice height (3D only), “-p” for number of particles, “-c” for whether to use
CUDA or not (true or false), “-tau” for setting the value of τ , and many more for time
measurements (see help for more details). It is important to note that command line
arguments take precedence before the configuration value parameters (they overwrite
them). This means that the user can select whether he wants to use 2D/3D simulation
or whether to use CUDA or CPU implementation without recompiling the code.

Available options in the configuration file are:

• LBM type: {2D, 3D}

• VSync: {0, 1, 2} (0 is off, 1 is 60FPS, 2 is 30FPS)

• lattice height: (int)n (only in 3D)

• scene filename: *.ppm

• use CUDA: {true, false}

• block dim 2D: 2n, 2 ≤ n ≤ 10

• block dim 3D x: 2n, 2 ≤ n ≤ 10

• block dim 3D y: 2n, 2 ≤ n ≤ 10

• draw streamlines: {true, false} (2D CPU only)

• max streamline length: (int)n (2D CPU only)

• num particles: [0, cca 50000000]

10



• camera speed: (int)n

• tau: [0.5005, 10.0]

• window width: (int)n

• window height: (int)n

• autoplay: {true, false}

• measure time: {true, false}

• log measurements to file: {true, false}

• print measurements to console: {true, false}

• avg frame count: (int)n

6 Testing

The application was tested on multiple scenes (over 30) during its development. Further-
more, one of the main reasons both 2D and 3D LBM implementations were kept was that
the 2D version reveals errors very quickly. The macroscopic velocities (see Figure 7) and
velocities of advected particles were visualized for easier debugging. Basic streamline
drawing was also implemented for 2D CPU version which can be seen in Figure 8.

Figure 7: Visualization of macroscopic velocity vectors with τ = 0.75.

11



Figure 8: Streamlines drawn for 1000 particles with τ = 0.75.

7 Results

The algorithm was tested on two computers: a desktop and a notebook. See Table 1 for
their specifications.

Desktop Notebook

Operating system
MS Windows

10 Home (64-bit)

MS Windows

10 Home (64-bit)

CPU
Intel Core i7-6700K

@ 4.00GHz 4.00GHz

Intel Core i7-7700HQ

@ 2.80GHz 2.81GHz

GPU
Nvidia GeForce

GTX 1080

Nvidia GeForce

GTX 1050 Ti

Memory 32.0 GB RAM 16.0 GB RAM

Compute capability 6.1 6.1

CUDA driver version 10.0 10.0

CUDA cores 2560 768

Table 1: Specifications of computers that were used for measurements.

The measurements were initially done on some selected scenes in both 2D and 3D
(tables 2 through 5). Additional measurements were performed for more comprehensive
results where the effects of different lattice sizes and number of particles were considered
individually. These results were obtained from a simple scene with a circular obstacle
and are presented in tables 6 through 9. The times presented in tables are averages of
1000 frames for all 2D scenes up to 1 million particles, otherwise they are averages of
100 frames (3D scenes and 2D scenes with 10 million particles and more). The block
configurations were, as mentioned before, 256 threads per block in 2D and 32x2 threads
per block in 3D.

12



As the reader can observe from the presented data, the speedups for large scenes,
especially in 2D, are quite significant. The largest bottleneck of the GPU implementation
seems to be handling large quantities of particles and as I’ve suggested in previous
chapters, I’d like to improve the performance there in future updates. Most significant
difference between CPU and GPU versions can be seen for the 4096x4096 lattice (over
16.7 million lattice nodes in total) in 2D where the GTX 1080 provides around 85 times
faster computation than the i7-6770K CPU. The GTX 1050 Ti provides around 49 times
faster simulation than the i7-7700HQ CPU.

8 Conclusion & Future Work

The LBM method was implemented in 2D and 3D. The usage of GPU was crucial
in speeding up the simulation to speeds that provide a real-time simulation even for
fine lattices and large amounts of particles. The application is quite extensive and
provides users with a lot of freedom and possibilities when it comes to testing LBM.
In future, the memory accesses can be optimized for shared memory usage and the
trilinear interpolation for particle movement can be rewritten to use texture arrays.
Furthermore, some of the high Reynolds number methods such as the subgrid model [6]
can be implemented to stabilize the computation when simulating turbulent flows.

References

[1] N. Maquignon, “Everything you need to know about the Lattice Boltzmann Method.”
http://feaforall.com/creating-cfd-solver-lattice-boltzmann-method/,
2017. [Online; accessed: 2018-12-30].

[2] M. A. Woodgate, G. N. Barakos, R. Steijl, and G. J. Pringle, “Parallel performance
for a real time Lattice Boltzmann code,” Computers & Fluids, 2018.

[3] M. Schreiber and D.-T. M. P. Neumann, GPU based simulation and visualization
of fluids with free surfaces. PhD thesis, Diploma Thesis, Technische Universität
München, 2010.

[4] Y. B. Bao and J. Meskas, “Lattice Boltzmann method for fluid simulations,” De-
partment of Mathematics, Courant Institute of Mathematical Sciences, New York
University, 2011.

[5] J. Latt, “Technical report: How to implement your DdQq dynamics with only q
variables per node (instead of 2q),” Tufts University, pp. 1–8, 2007.

[6] X. Wei, Y. Zhao, Z. Fan, W. Li, S. Yoakum-Stover, and A. Kaufman, “Blowing in
the wind,” in Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium
on Computer animation, pp. 75–85, Eurographics Association, 2003.

13



Scene Number of particles CPU time [ms] GPU time [ms] Speedup

100x100 02

(10,000)

10k 0.92 0.49 2.51

100k 1.80 0.85 2.11

1m 10.92 2.93 3.72

10m 99.33 18.24 5.45

300x100 03

(30,000)

10k 2.45 0.43 5.66

100k 3.37 0.56 6.01

1m 12.56 1.46 8.62

10m 102.55 10.78 9.51

512x256 01

(131,072)

10k 11.55 0.99 11.66

100k 12.76 1.09 11.68

1m 24.20 2.02 11.99

10m 142.53 11.66 12.22

40m 535.91 41.73 12.84

2048x2048 01

(4,194,304)

10k 867.78 12.55 69.14

100k 874.22 12.28 71.18

1m 909.76 13.10 69.46

10m 1224.15 19.07 64.20

Table 2: Measurements for 2D LBM on desktop computer. Values in round brackets
denote total number of lattice nodes in the scene.

Figure 9: Another possible visualization using pointsprites.

14



Scene Number of particles CPU time [ms] GPU time [ms] Speedup

100x100 02

(10,000)

10k 1.41 0.56 2.51

100k 2.51 0.98 2.56

1m 12.85 6.96 1.85

10m 112.12 33.79 3.32

300x100 03

(30,000)

10k 3.31 0.72 4.62

100k 4.73 0.84 5.64

1m 15.57 3.26 4.78

10m 125.40 22.67 5.53

512x256 01

(131,072)

10k 14.68 1.18 12.43

100k 15.49 1.33 11.67

1m 29.95 4.02 7.46

10m 156.18 23.23 6.72

40m 588.30 88.36 6.65

2048x2048 01

(4,194,304)

10k 964.20 23.31 41.36

100k 962.39 23.41 41.11

1m 1000.18 24.78 40.36

10m 1361.42 42.07 32.36

Table 3: Measurements for 2D LBM on notebook. Values in round brackets denote total
number of lattice nodes in the scene.

Scene Number of particles CPU time [ms] GPU time [ms] Speedup

60x40 02

h = 60

(144,000)

10k 29.05 3.48 8.35

100k 30.76 3.81 8.07

1m 50.66 6.64 7.63

10m 250.30 31.42 7.97

120x80 04

h = 80

(768,000)

10k 182.23 13.84 13.17

100k 184.37 14.11 13.07

1m 206.97 18.21 11.37

10m 431.78 62.26 6.94

200x200 01

h = 100

(4,000,000)

10k 1361.74 62.97 21.63

100k 1363.03 66.53 20.49

1m 1387.35 68.12 20.37

10m 1641.21 132.87 12.35

Table 4: Measurements for 3D LBM on desktop computer. Values in round brackets
denote total number of lattice nodes in the scene and h denotes the height of the scene.

15



Scene Number of particles CPU time [ms] GPU time [ms] Speedup

60x40 02

h = 60

(144,000)

10k 35.83 4.11 8.71

100k 38.44 4.90 7.85

1m 62.58 11.16 5.60

10m 293.48 70.48 4.16

120x80 04

h = 80

(768,000)

10k 234.06 14.43 16.22

100k 218.49 15.07 14.50

1m 248.78 23.56 10.58

10m 509.63 95.51 5.34

200x200 01

h = 100

(4,000,000)

10k 1550.62 66.31 23.39

100k 1531.45 66.53 23.02

1m 1559.63 74.29 20.99

10m 1884.39 150.51 12.52

Table 5: Measurements for 3D LBM on notebook. Values in round brackets denote total
number of lattice nodes in the scene and h denotes the height of the scene.

Figure 10: Screenshot of the application with its user interface.

16



Desktop Notebook

Lattice size CPU [ms] GPU [ms] Speedup CPU [ms] GPU [ms] Speedup

128x128 (214) 11.15 2.65 4.21 14.00 4.97 2.82

256x256 (216) 16.31 2.38 6.85 20.57 5.04 4.08

512x512 (218) 36.42 2.54 14.34 44.25 6.58 6.72

1024x1024 (220) 174.38 5.25 33.22 218.97 9.28 23.60

2048x2048 (222) 915.33 13.95 65.62 1021.02 25.62 39.85

4096x4096 (224) 3938.81 45.90 85.81 4426.68 89.91 49.23

Table 6: 2D measurements with varying lattice sizes for scene containing single circular
obstacle with 1 million particles.

Desktop Notebook

Lattice size CPU [ms] GPU [ms] Speedup CPU [ms] GPU [ms] Speedup

32x32x32 (215) 28.88 4.80 6.02 35.72 10.96 3.26

32x32x64 (216) 37.62 5.18 7.26 46.78 13.25 3.53

64x64x32 (217) 51.12 6.29 8.13 63.29 12.27 5.16

64x64x64 (218) 84.59 9.34 9.06 106.31 18.47 5.76

64x64x128 (219) 164.01 13.78 11.90 199.81 18.92 10.56

128x128x64 (220) 327.63 22.07 14.85 398.14 27.73 14.36

128x128x128 (221) 801.16 39.24 20.42 943.62 43.10 21.89

128x128x256 (222) 1652.89 70.90 23.31 1858.9 75.61 24.59

Table 7: 3D measurements with varying lattice sizes for scene containing single circular
obstacle with 1 million particles.

Desktop Notebook

Num. particles CPU [ms] GPU [ms] Speedup CPU [ms] GPU [ms] Speedup

100k 6.14 0.97 6.33 8.01 1.26 6.36

1m 16.30 2.38 6.85 20.53 5.08 4.04

10m 124.81 11.96 10.44 151.5 25.40 5.96

50m 603.67 46.87 12.88 730.54 107.03 6.83

Table 8: 2D measurements with variable number of particles for scene containing single
circular obstacle with lattice dimensions 256x256 (216 lattice nodes).

17



Figure 11: Graphs depicting average times from Table 6 (top) and Table 7 (bottom).

18



Figure 12: Graphs depicting speedups from Table 6 (left) and Table 7 (right).

Desktop Notebook

Num. particles CPU [ms] GPU [ms] Speedup CPU [ms] GPU [ms] Speedup

100k 14.33 1.60 8.96 19.04 2.17 8.77

1m 37.92 4.92 7.71 47.47 10.83 4.38

10m 230.91 29.93 7.72 312.2 72.93 4.28

50m 1098.14 98.10 11.19 1575.36 344.06 4.58

Table 9: 3D measurements with variable number of particles for scene containing single
circular obstacle with lattice dimensions 32x32x64 (216 lattice nodes).

19


	Introduction
	Algorithm
	Streaming Step
	Collision Step
	Inlet Update Step
	Boundary Conditions & Obstacles (Update Colliders)
	Particle Movement Step
	Main Loop

	CPU Implementation
	GPU Implementation
	OpenGL Interoperability

	Application Details
	Scenes
	Controls and Configuration

	Testing
	Results
	Conclusion & Future Work
	References

